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Abstract: Air quality, water pollution, and radiation pollution are major factors that pose genuine
challenges in the environment. Suitable monitoring is necessary so that the world can achieve
sustainable growth, by maintaining a healthy society. In recent years, the environment monitoring
has turned into a smart environment monitoring (SEM) system, with the advances in the internet of
things (IoT) and the development of modern sensors. Under this scenario, the present manuscript
aims to accomplish a critical review of noteworthy contributions and research studies on SEM,
that involve monitoring of air quality, water quality, radiation pollution, and agriculture systems.
The review is divided on the basis of the purposes where SEM methods are applied, and then each
purpose is further analyzed in terms of the sensors used, machine learning techniques involved,
and classification methods used. The detailed analysis follows the extensive review which has
suggested major recommendations and impacts of SEM research on the basis of discussion results and
research trends analyzed. The authors have critically studied how the advances in sensor technology,
IoT and machine learning methods make environment monitoring a truly smart monitoring system.
Finally, the framework of robust methods of machine learning; denoising methods and development
of suitable standards for wireless sensor networks (WSNs), has been suggested.

Keywords: environment; pollution; internet of things (IoT); sensors; smart environment monitoring
(SEM); smart sensor; wireless sensor networks (WSNs)

1. Introduction and Background

Sustainable growth of the whole world depends on several factors such as economy, quality
education, agriculture, industries and many others, but environment is one of the factors that plays the
most important role. Health and hygiene are key components of the sustainability of mankind and
progress of any country, which comes from a clean, pollution free and hazardous free environment.
Thus, its monitoring becomes essential so as to ensure that the citizens of any nation can lead
a healthy life. Environment monitoring (EM) consists of proper planning and management of disasters,
controlling different pollutions and effectively addressing the challenges that arise due to unhealthy
external conditions. EM deals with water pollution, air pollution, hazardous radiation, weather
changes, earthquake events, etc. The sources of pollution are contributed by several factors, some of
which are man-made and others due to natural causes, and the role of EM is precisely to address the
challenges so that the environment is protected for a healthy society and world [1]. With the more
recent advances in science and technology, especially artificial intelligence (AI) and machine learning,
EM has become a smart environment monitoring (SEM) system, because the technology has enabled
EM methods to monitor the factors impacting the environment more precisely, with an optimal control
of pollution and other undesirable effects. The design of smart cities is taking the place of old and
traditional methods to create and plan urban environments. Smart cities are planned using wireless
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networks that assist monitoring of vehicular pollution level in the city [2]. Wireless networks or
wireless sensor networks (WSNs) comprise modern sensors which operate on AI based monitoring
and controlling methods. Internet of things (IoT) devices are employed in WSNs for effective waste
management, vehicle marking, temperature control, and pollution control. Therefore, modern methods
of environment monitoring are known as SEM systems, due to use of IoT, AI and wireless sensors [3].
Assessment of burned areas using multispectral data captured through satellite imaging and remote
sensing [4], mobile health monitoring systems and IoT based environment systems [5], smart marine
environment systems using multimodal sensing networks [6], and many other SME methods are
reported in current literature. When wireless devices are used over a WSN, then certain standards
and protocols are important for effective implementation of SEM systems and thus studies are also
reported on developing protocols and standards for IoT based SEM systems [7].

The whole world is working in a comprehensive manner to protect the environment for sustainable
agriculture, growth and a healthy society and therefore the main aim of SEM is to address the challenges
due to undesirable effects in the environment through smart monitoring so that all key indicators of
growth, including the health of society, are well regulated. The environment monitoring methods are
implemented for various applications, aiming to serve certain purposes, which may include weather
forecasting [8,9], air pollution control [10–12], water quality control and monitoring [1,13,14], and crop
damage assessment [14,15], for instance. The objective is to facilitate favorable environment conditions
either for agriculture or human beings, or any inhabitants on the earth. The technologies such as IoT
and wireless networks have made the monitoring of environment simple and AI controlled. The SEM
systems are reported in the literature using different types of smart sensors [8,16–19], wireless sensor
networks (WSNs) [11,14,18,20–22], and IoT devices [1,3,5,8,10,18,23,24]; these devices, communicating
through the networks, have helped the environment monitoring as a smart monitoring system, able to
address the challenges in variable conditions.

IoT, WSNs and suitable sensors are the backbone of the SEM systems. The WSNs provide the
connectivity of the data, captured by employing sensors and IoT devices, used to record, monitor and
control various environmental conditions, such as water quality, temperature, air quality, etc. A smart
environment system can be easily understood with the help of an example of a cloud based SEM system,
as shown in Figure 1. The example shown in this figure depicts monitoring of water contamination
and its control, by using a cloud based system that connects IoT devices and various suitable sensors.
The system can monitor, with the help of IoT devices, if the water is contaminated or clean since all
IoT devices have embedded the capability of AI and machine learning. The organization, which is
involved in monitoring the water quality of various water sources, has access to the cloud through the
data collected from various sensors, for example an aqua sensor, and is subjected to IoT based analysis
where the quality check is done.

One more example of a SEM system, highlighting a general purpose system with extended scope,
is shown in Figure 2., which shows how the system is addressing various issues related to environment
monitoring, such as humidity, temperature, radiation, dust, UV signal etc. The backbone of the system
is a WSN that is establishing the actual interface between IoT devices and data captured through
various types of smart sensors. This is a perfect example of a “smart city” [11,25,26], using a SEM
system that ensures healthy environment for its citizen.
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By focusing on agriculture, as a relevant issue for the growth of any nation, it is easy to underline
how SEM can play a significant role by providing a “smart or green agriculture” [14,20,27,28], that can
deal with major challenges and factors involved in sustainable growth and enhancing productivity
within the agriculture sector. One such smart agriculture scenario can be seen in Figure 3, where a SEM
system is actually a smart agriculture monitoring system. In this case, the health of soil, moisture
analysis, water contamination level, water quantity level and several other factors are very important
in obtaining sustainable productivity in the agriculture sector. We can see in Figure 3 that the smart
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agriculture monitoring system includes all such factors, controlled and monitored with the help of IoT
devices, suitable sensors capturing the agricultural data, then transmitted to the cloud through a WSN.
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We attempted to study the existing contributions by a critical survey on SEM methods; the literature
suggests that the extensive reviews on SEM methods which have discussed significant findings are
not found. We could not find much literature that reviews or surveys SEM techniques. A survey on
smart agriculture systems [29], smart home technologies [30], smart health monitoring systems [31],
environment monitoring [32], an IoT based ecological system [33], IoT for marine environment
monitoring [34], and a survey on pollution monitoring system [35], are a few of the survey and review
related articles highlighting different aspects of SEM. The environment is contaminated due to several
factors, but water pollution, air pollution, radiation and sound pollution are mainly involved in most
of the existing research. This motivates us to bring out an extensive review on SEM that covers all
important factors affecting the health of the environment and predominant methods used to mitigate
the challenges due to these factors, such as IoT and sensor technologies.

We have briefly discussed in this section the main issues related to environment monitoring, SEM,
the role of IoT, AI and WSNs in implementing SEM. The next part of the paper is organized as follows:
Section 2 discusses related research and study; Section 3 presents comparative analysis of advances in
SEM systems; Section 4 highlights the significance of the study and recommendations).

2. Related Research and Study

The current research suggests that environment monitoring systems are implemented smartly
as SEM for various purposes and using different methods. A huge number of contributions on
SEM, both based on purposes and types of methods, have been studied and therefore the related
research has been discussed in three main subsections, namely the study based on smart agriculture
monitoring systems (SAMs), smart water pollution monitoring systems (SWPMs), and smart air quality
monitoring systems (SAQMs). In this manuscript the authors have attempted to critically report
the major findings and limitations of the current research on SEM. Soil monitoring (SM) [14,15,36],
ocean environment monitoring (OEM), marine environment monitoring (MEM), air quality monitoring
(AQM) [10,11,37,38], water quality monitoring (WQM) [14,39], and radiation monitoring (RM) [1,36]
have been covered, by offering a wide analysis of different application fields of SEM.
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While studying the existing literature on SEM methods, especially on advancements in IoT and
sensor technologies for SEM systems, we found that an extensive review on this topic has not been
much reported. We found some interesting literature on specific areas of research addressing some
challenges of environmental factors such as water pollution, air quality, radiation, and smart agriculture.
We aimed at bringing out major advances in IoT and sensor technologies used for addressing the
challenges in SEM and thus we included some significant research studies and contributions of various
sources highlighting specific classic work on SEM methods. The current study on advances in IoT and
sensor technologies used for SEM provides insight to the scientists, policymakers, and researchers in
developing a framework of appropriate methods for monitoring the environment that faces challenges
mainly due to poor air quality, water pollution and radiation. These factors also affect agriculture
which is backbone of any developed and developing economy and thus smart agriculture monitoring
(SAM) has also been studied in this section.

Table 1 shows major research studies and contributions on the above SM, OEM, MEM, AQM,
WQM and RM areas of interest. Soil monitoring methods were reported to have been affected by
greenhouse effects. Ocean and marine SEM systems have been implemented using sensors, WSN
and IoT and these methods have mainly suffered with cost, coverage and installation issues [40–42].
Air pollution control and AQM [1,10,11,16,43–45] have been suggested using a mobile sensor network,
wireless sensors and IoT devices that operate on AI and machine learning. In a similar manner, we can
see in Table 1 that the different types of SEM systems are designed and implemented for various
purposes and there is no robust method that can address any of the challenges of environment.

Table 1. Research studies based on purpose and applications of environment monitoring.

Research Purpose Findings and Challenges Method/Device Used

OEM [40] Oceanic environment
monitoring

Light weight; costly and invasive sensory
networks Wireless Sensors

IOT Based SM [46] Soil monitoring for
farming

Efficient vegetable crop monitoring;
Greenhouse gases pose challenges on

health of vegetables like tomato
Wireless sensors

IoT Protocols for MEM [42] Marine environment
acoustic monitoring

Lower latency; low power consumption;
installation and coverage issues WSN and IoT

IoT for air pollution [47] Air pollution
monitoring system

Mobile kit “IoT-Mobair” for prediction;
inferior precision; low sensitivity;

computationally complex

Gas sensor
and IoT

[5] Air quality monitoring

Scalable and high-density air quality
monitoring with interconnection of

heterogeneous sensors; computational
complexity due to huge data captured

and processed

Mobile sensor network
and WSN

IoT based SEM [7] Environmental
monitoring

W3C standard for interoperability;
interoperability issues of
heterogeneous sensors

Heterogeneous
sensors

Air quality [12] Air quality monitoring Large area monitoring; noisy data; accuracy
and cost issues

Geomatics sensors
and IoT

Pollution monitoring [16] Air pollution
monitoring System Real time monitoring; accuracy issues Sensors with MQ3

Model, Raspberry Pi and IoT

Sensor based AQM [37] Air pollution
monitoring system

Efficient for low coverage area; low cost;
easy to install; less number of pollutants

are covered

Gas sensor
and LASER sensor

SEM [48] Dust and humidity
monitoring

Wide coverage and efficiency; low cost and
small size IoT

Radiation [36] Radiation monitoring High cost and low stability against
temperature variation HPXe chamber

Aqua farming and
energy conservation [49] Aqua Farming Water quality and quantity control; higher

carbon emission and energy requirement

Odor, pH,
conductance

and temperature sensor
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Table 1. Cont.

Research Purpose Findings and Challenges Method/Device Used

Multi-agent
supervising system [50]

e-health monitoring
system due to

temperature and
radiation changes

around the surroundings

Detection of emergency situations Supervising system and AI

SEM in winter season [51]
Effect of surroundings

during winter
season only

Effect of batteries and other radiation Wireless sensor network

LoRa technology for
climate monitoring [32]

Climate and ecology
monitoring Study of emissions in the environment LoRa technology and sensor

network

Smart city and SEM [52] Monitoring of data
center radiation

Temperature, humidity and energy
consumption in data centers monitored for

smart city and SEM
IoT

ZigBee based
environment monitoring [53]

Smart industry
environment To study hazardous effects in industries ZigBee and WSN

LoRa: Long Range

2.1. Study based on Smart Agriculture (SAM)

This section presents studies and research on smart agricultural monitoring (SAM) systems
covering the measures for crop monitoring, pest control, fertilizer control etc. The research study
summary for a few important works can be seen in Table 2. Plant growth monitoring [54] was
implemented and named as “gCrop”, using IoT, machine learning and WSN. The work uses a regression
model of the 3rd degree and provides a prediction accuracy of 98% but the computational complexity
was high. The analysis of crop quality [14,46] assessment was made using SAR data for monitoring
the quality of paddy rice. Support vector machines (SVMs) with back-scattering features were used
in this assessment of the rice quality, with a limited sample size. Leaf area and dimension also play
an important role in the assessment of various types of crops, as means to determine if the growth is
satisfactory or not. One such work was reported in [55], that was used to measure the leaf area index
using SVM as the machine learning technique, with a Gaussian process model [56] and the accuracy of
measurement found as 89% with a limited sample size also in this case. An expert system using AI has
been implemented in [57] using the Naive Bayes [58] method and machine learning which operates
on sensor data captured in agriculture. This work was useful in monitoring the quality of fertilizer,
pesticides and the amount of water to be irrigated in the crops. Some other works studied crop quality
assessment [21,59,60] and [61] used for monitoring of the soil health, suitable for soya bean crop on the
basis of phenological data and unmanned aerial vehicle (UAV) real-time images. There are a few other
important studies on various application of SEM systems for different applications, such as smart
farming [62], pest monitoring [63], and crop area monitoring [61].

The environment conditions affect the health of crops and consequently the agriculture growth.
Therefore, we aimed at studying the status of research on SEM using IoT, sensors and AI techniques.
The factors involved in agriculture such as soil condition, moisture condition, water pollution, air
quality, temperature etc. have been taken into consideration while reviewing the advances in SEM
methods. The focus is given to studies on water pollution monitoring and air quality monitoring
methods also, which are discussed in next sub-sections.
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Table 2. Research on IoT based SEM systems.

Purpose/ Area of Study Device/Method Used Models

Plant growth [54] IoT, WSN, Machine learning based
“gCrop” (green-crop)

Regression model of 3rd degree
of polynomial with 98% prediction

accuracy but suffers with
computational complexity

Crop quality [14,46]
SVM using remotely sensed

synthetic aperture radar (SAR) for
paddy rice monitoring

Back-scattering features, SVM and
regression tree with

77.65% accuracy;
limited sample size

Leaf area index [55] SAR images and machine learning
and SVM

Gaussian process model, limited
sample size

Expert system for fertilizer, pesticides,
irrigation control [57]

Machine learning operates on
sensor data

Naïve Bayes, 89.13% of accuracy;
comparison of testing with
different machine learning

was missing

Crop quality [21,59,60]

Machine learning applied to
real-time UAV images of soya bean

crop. Tested 5 different diseases
and soil quality assessment

Resnet-50, VGG-19 with
99.04 % accuracy

Crop quality [61]
Deep learning applied over

Phenological data, 6 different
crops were tested

CNN (convolutional neural
network), accuracy not mentioned

Smart farming [62] IoT, WSN, deep learning for
fruit growth SVM, accuracy not reported

Pest control [63]
IoT and deep learning using
global and local features for

pest monitoring

CNN model with 86.6% of
average accuracy

Crop area [61] Deep learning for plant area
monitoring of peanut crop CNN with 96.45% of accuracy

SVM: support vector machine; UAV: unmanned aerial vehicle

2.2. Study based on Smart Water Pollution Monitoring (SWPM) Systems

Different literature has been studied on smart water pollution monitoring (SWPM) methods
and systems using machine learning methods, IoT and wireless sensors. Table 3 depicts a few major
contributions in the area of SWPM. Remotely sensed images were analyzed and machine learning
was applied for prediction of the pollution level in the lagoon water, useful for agriculture [64].
This work used ordinary neural network based machine learning and the prediction results were not
very satisfactory. Classification of water contamination [65] has been studied and water was classified
as clean or polluted water, using machine learning methods and IoT devices. The paper presented
a realtime contamination monitoring system, though the data captured were in a limited area only.
The assessment of various pollutants mixed in water has been implemented in [66] and the pollutants
were classified using a DSA-ELM model [66] with the evaluation of the model itself. AI and neural
network based prediction of water quality parameters was studied in [67], and alkalinity, chloride
and sulphate contents were estimated. The work mainly focused on prediction of water quality
parameters and values of sulphate or chloride present in the water. Big data analysis and issues in
classification of water contamination were discussed for classification of the contamination using SVM
in [68]. Quality assessment of drinking water and its classification into drinkable and non-drinkable
water were presented in [69,70], as a real time monitoring system and AI-SVM based classification
technique respectively. A video based surveillance of water quality and pollutants, was studied in [71],
and the surveillance helped to stop the man–man sources of pollutants. The work employed IoT tools
for video-surveillance and machine learning for classification of water as polluted and clean water.
One more work on a drinking water prediction model was suggested in [61], and a feature based
model helped in analysis of drinking water to further predict its quality before usage. In another work,
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chlorophyll-A concentration in lake water was assessed using different machine learning models [72],
and the work was recommended as method for a realtime lake water cleaning management system.

Table 3. Research on IoT based smart water pollution monitoring systems (SWPM).

Research Purpose Device/Method Used Models

Lagoon water [64] Agricultural water pollution
control using remote sensing

Machine learning
and image analysis

for prediction

Linear regression (LR),
stochastic gradient descent
(SGD) and ridge regression

(R-23 PLS)

Water contamination [65] Water contamination assessments FFT and
machine learning

Color layout descriptor and
SVM

Water quality [66] Study of water pollutants
Extreme learning
DSA-ELM model
for classification

DSA-ELM model and dolphin
swarm with 83.33% accuracy

Water quality
pollutants parameters [67] Water contamination analysis

Neural network for
prediction for alkalinity,

chloride,
sulphate values

Levenberg–Marquardt
algorithm with 87.23% accuracy

Big data and SVM [68] Water contamination analysis Machine learning
based classification SVM with 91.38% accuracy

Drinking water [69] Drinking water analysis
Machine learning for

classification: drinkable
or non-drinkable water

DT, KNN, SVM with
97% accuracy

Water quality [70] Water Contamination analysis
Neural network for

classification: drinkable
or non-drinkable water

SVM

Water pollutant security [71] Water contamination surveillance SVM for classification as
polluted or clean water SVM with 93.8% accuracy

Drinking water [73] Drinking water analysis Machine learning
based prediction FAST learning technique

Chlorophyll-a in lake water [72] Chlorophyll-A concentration in
lake water

machine learning based
classification of water BPNN, SVM with 78% accuracy

Water quality monitoring [74] Water quality monitoring IoT for surface water
quality assessment IoT with smart sensors

2.3. Study based on Smart Air Quality Monitoring (SAQM)

Research on SAQM methods and systems have also been studied, and Table 4 presents a summary
of different SAQM approaches used in recent literature on air quality monitoring systems. Air quality
characterization [58] has been implemented using heterogenous sensors and machine learning methods.
The monitoring as well as characterization of water quality was achieved but interoperability issues
were reported in this work due to use of heterogenous sensors. Air quality evaluation using fixed as
well as mobile nodes of sensors [75] was implemented, capable to check the air quality in stationary as
well as mobile ways. In this latter case, the compatible sensors were deployed as mobile nodes which
can work satisfactorily in a moving environment. Data captured through smart sensor nodes were
processed and analyzed with the help of machine learning techniques. Another air quality control
process was studied using IoT and machine learning techniques in [76], with a focus on assessment of
air pollution, deploying gas sensors which help in capturing air particles and analyzing the pollutants
mixed in the air. Sensor networks have been established in moving vehicles for monitoring air quality
with the help of machine learning; in [77], mobile sensor nodes and WSN were deployed. Infrared
sensors were deployed to evaluate the air quality, especially analyzing volatile organic compounds
(VOCs) in [25], with the help of machine learning methods. The elements of VOCs were detected
and analyzed using spectroscopic observations. There are a few components present in the air that
help assessing the quality of the air; one such component, called PM2.5, was predicted in [78], using
extreme machine learning techniques tested upon spatio-temporal data collected in a certain duration
of time over a range of distances covered by the sensors. Different forecasting models were suggested
in [44] for quality evaluation of urban air and the components like O3, SO2 and NO2 were determined
and a comparison was made for the models used in the work. RFID and a gas sensor based air
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quality control mechanism were implemented in [79], to determine the level of pollution in the air
by predicting the pollution value; IoT was employed to analyze sensory data captured through gas
sensors. RFID was primarily used in this work for detection of pollutants and communicating to WSNs
with the help of IoT devices connected across a WSN architecture. An SAQM system has been studied
in [80], using a LoRaWAN (long range WAN) [80–82], and this work has been very useful for detecting
temperature, dust, humidity and carbon dioxide components in the air. An intelligent air quality system
was presented for detection of CO2, NOx, temperature and humidity in [83] using AI and machine
learning techniques for developing expert systems for air quality assessment. Furthermore, PM10,
PM2.5, SO2, oxides of nitrogen (NOx), O3, lead, CO and benzene components were detected, on the
basis of machine learning methods trained by spatio-temporal data, in [84]. This was extended using
deep learning for detection and detailed analysis of O3 components only. Another work employing
heterogenous sensors was studied in [85]. SVM was used for analyzing the sensor data, captured
through heterogenous sensors, and air quality was estimated.

Table 4. Research on SAQM systems using machine learning and IoT.

Research Purpose Data and Technique

Air quality characterization [58] Air quality monitoring Heterogeneous sensors; machine
learning based predictive model

Air quality modeling [75] Air quality monitoring Mobile nodes

Air pollution [76] Air quality monitoring
Gas sensors from mobile

vehicle data,
IoT and machine learning

Air quality in vehicular
sensor network [77] Air quality monitoring Sensors in mobile nodes

Detection of VOC in air [25] Organic compound detection Infrared sensors, spectroscopy and
machine learning

PM2.5 estimation [78] Air quality in terms of PM2.5
concentration levels

Spatio-temporal geographic data,
Extreme machine

learning technique

Urban air [44] Urban air pollution in terms of O3,
NO2 and SO2 concentrations Forecasting models

Air pollution prediction [79] Air pollution control RFID, Gas sensors and IoT

Smart air quality [80] Air quality
Temperature, humidity, dust
and carbon dioxide sensor;

LoRaWAN

Intelligent air quality system [83] Air quality for detection of CO2,
NOx, temperature and humidity UV light, AI and sensors

Ozone, PM10 and PM2.5 [84]
PM10, PM2.5, SO2, Oxides of
nitrogen (NOx), O3, lead, CO

and benzene

Machine learning and
spatio-temporal data

Air quality [85] Air quality Heterogeneous sensors and SVM

Abnormal O3 [84] Ozone (O3) Ozone data and deep learning

Wearable sensors [86] Temperature and
humidity monitoring

Wireless and wearable
senor technology

CO2 monitoring [87] Monitoring of carbon dioxide IoT and cloud technologies

Indoor air quality [88] Air quality monitoring in
indoor environment

IoT, VOC: voloatile organic
compound; LoRaWAN

(VOC: volatile organic compound; LoRaWAN: long range WAN)

3. Discussion, Analysis and Recommendation

This section presents analysis, discussion and a few significant recommendations on the basis
of extensive literature review on various SEMs. The SEM systems were studied, covering air
quality assessment, water pollution monitoring and agriculture monitoring system, in addition to
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the sub-subsidiary applications of these three major studies. The recent research contributions were
the main focus of the study though a few important research studies, conducted and investigated
in last two decades, were also included. The contributions were reported on various SEM methods
used for several purposes, mainly air quality assessment [1,5,11,12,47,58,76,85,89,90]; water pollution
monitoring methods [1,13,14,39,64,66,71–73,91–97]; radiation monitoring methods [1,36]; and smart
agriculture monitoring systems [1,14,28,54,60,62,63,98–102].

The extensive study on SEM methods brings out the following major observations for the discussion:

• The research on SEM includes various purposes, mainly on SAM, SWPM and SAQM. The study
of water pollution, air quality, soil moisture and humidity can help in modeling and design of
healthy environment systems that would also help smart agriculture for sustainable growth of
the economy.

• The methods under each of the purposes are divided in terms of sensory data used, machine
learning methods used, IoT devices used, and types of sensors involved. The current study made
by us mainly focused on impact of existing research on water quality monitoring, air quality
assessment, applications of SEM and smart agriculture systems.

• In most of the SEM methods, especially SAM and SWPM, CNN based deep learning methods are
used by the researchers and other deep learning models are not very frequently used.

• The sensory data vary in most of the applications of SEM and there is no robust data over which
a maximum number of methods are operating. The data type and regions of interest are not the
same for various research work.

• The methods have been used for either classification or prediction; for example, water is classified
as polluted or clean water; similarly, the water and air quality can be predicted (e.g., level of
degradation).

The studies reported for all purposes of SEM systems do not have any common challenges and
vary from application to application, but the major challenges observed are as follows:

• Wherever heterogeneous sensors are used, there is problem of interoperability in the analysis of
the data captured through different types of sensors.

• Sample size is limited in many of the contributions.
• Noisy data poses a challenge in analysis. Noise is present in the data captured through sensors

used for various purposes. The noise may be contributed by several internal and external factors.
• The machine learning methods which have been employed for training the data and for

classification are mostly traditional methods of machine learning, such as SVM, neural network, etc.
• Fuzzy based methods and deep learning approaches are used in a few research studies and

implementations, but the research suffers with either big data issues or huge computational complexity.
• There is no robust approach of machine learning reported, that can be employed in addressing the

challenges of the environment irrespective of the purpose of the monitoring and control, types of
data, and types of sensors used.

Research trends were also analyzed to assess the quantum of research carried out in the area of
SEM [14,21,31,103–113] and Table 5 shows a summary of quantity of research in this case. The study of
trends was made by using a publication search in the Science Direct databases in year-wise manner.
In this analysis, the duration has been chosen from year 1995 to year 2020. It can be clearly seen
in Table 5 that the quantum of research on SEM has been increasing with the time in both the case,
namely the research employing IoT and WSN, as well as the research using IoT and machine learning.
An interesting fact is an outcome of the table: the research using modern machine learning methods is
still lagging behind those which do not use any machine learning. However, if IoT devices are used,
and deployed in a WSN, then the role of AI cannot be overlooked.
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Table 5. Quantum of research contributions using IoT and WSN; and IoT and machine learning.

Year Research Using IoT and WSN Research Using IoT and Machine Learning

1995–2000 21 2

2001–2005 7 7

2006–2010 22 2

2010–2015 541 175

2015–2020 6181 3004

The analysis of research trends are shown in Figure 4, highlighting the research trends in two main
categories, namely SEM using IoT and WSN, and IoT and machine learning, respectively. The trends
suggest that the SEM has yet to be implemented and studied widely on machine learning based
training and subsequent classification or prediction. The research is reported to have increased every
year but more impact of IoT and WSN can be seen in Figure 4.
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The above discussion and analysis helps us recommending the following for better, robust and
smarter environment monitoring systems:

• A framework of machine learning methods needs to be developed.
• A robust set of classification, prediction and forecasting models has to be designed that can operate

on any data, irrespective of the purpose of using the SEM.
• Suitable denoising methods are required to be implemented as pre-processing to the SEM

major stages, since most of the research has failed using de-noising the data and its
appropriate pre-processing.

• Data deduplication approaches and other methods are needed to deal with big data issues involved
in a few significant studies.

• SEM aims at sustainable development of any nation and the smart agriculture and smart
environment play a most important role in achieving the sustainable goals, but in rural areas,
in most of the developing and underdeveloped nations, the necessary infrastructure for setting
up IoT, WSN and other sensors is still a challenging task. This requires governmental level
involvement both at local as well as global perspectives.

• Interoperability issues in implementing various types of sensors, can be addressed by developing
suitable standards and protocols that can make the data compatible for all acquisition and
analysis systems.

An attempt was made to include major observations of a few significant review articles on SEM
but it was very difficult to report any such extensive review on the SEM in particular. This motivated
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us to study the most important contributions on research addressing environmental challenges due
to main factors. This review helped us to reach to some conclusions and make recommendations for
designing a robust SEM systems that can handle all possible challenges using a framework of AI and
sensor technologies.

4. Conclusions and Future Scope of Work

This paper has presented an extensive and critical review of research studies on various
environment monitoring systems used for different purposes. The analysis and discussion of the review
suggested major recommendations. The need of extensive research on deep learning, handling big data
and noisy data issues, and a framework of robust classification approaches has been realized. We have
focused mainly on water quality, and air quality monitoring as smart agriculture systems that can deal
with environmental challenges. The major challenges in implementation of smart sensors, AI and
WSN need to be addressed for sustainable growth through SEM. The participation of environmental
organizations, regulator bodies and general awareness would strengthen SEM efforts. The poor quality
of sensory data can be preprocessed using appropriate filters and signal processing methods to make
the data more suitable for all subsequent tasks associated in SEM. The future scope of the work aims at
studying other factors of environment such as sound pollution and disasters etc.
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